
 Page 1/7

TOPCASED Requirement: a model-driven, open-source and
generic solution to manage requirement traceability

A. Raphaël FAUDOU1, B. Tristan FAURE1, C. Sébastien GABEL2, D. Christophe MERTZ2

1: ATOS ORIGIN INTEGRATION, 6 impasse Alice Guy, BP 43045, 31024 Toulouse Cedex 03, FRANCE
2: CS Systèmes d’Information, Rue Brindejonc des Moulinais, BP 15872, 31506 Toulouse Cedex 05, FRANCE

Abstract: Model based engineering has proven
maturity and efficiency in industry but deliverable
and certification constraints have not yet been
completely adapted to this new approach. The
consequence is that people use more and more
models to capture and refine requirements but still
have to manage textual requirements in parallel and
ensure traceability between those requirements.

The TOPCASED project (http://www.topcased.org)
has started to address this issue by providing two
features about requirement management: import
textual requirements into models and create easily
textual requirements from model elements. This
paper aims to give an overview of the current state
of those features. At first, the requirement import
process provides a simple solution to extract
requirements from documents and inject them into
requirement models. Once imported, traceability
links can be created between high level textual
requirements and model elements as simply as a
"drag and drop" operation. So, the system
automatically creates a new low level requirement
linked to the upper requirement and referencing a
semantic model element. The TOPCASED
requirement system suggests a management
solution composed by a set of preference pages, two
complementary views for handling requirements
("upstream" for imported read-only requirements and
"current" for refined requirements) and a manager
helping to upgrade version of an upstream
document. This paper will cover in detail each item
described above including the document import
process. At the end we will give feedback from
operational projects and will present the future
directions.

Keywords: TOPCASED, Eclipse, modeling, MDD,
requirement, open-source.

1. Introduction

Requirements are key artefacts in avionics
development. In a full model-based process
requirements can be formalized as model elements
or groups of model elements. But there was some
delay before industry could switch to such a process,
meaning that most of requirements would remain in
a “textual” statement during the transition phase. So
the tools supporting this process should allow

creating and managing links between model
elements and “textual” requirements.

Until TOPCASED [1] 2.1.0 release, there was no
support for such a feature in the platform.

Latest avionics program gave the opportunity to
integrate this missing component into the platform.
The first study case was launched in 2008 on SAM
[2] modeling language. The process became mature
in 2009 and inspired other avionics programs with
similar needs. This success story led to new
developments to generalize the approach taken with
SAM on all other modeling languages implemented
in the TOPCASED platform.

This paper presents the requirements engineering
process used on avionics program and gives a quick
overview of the complete tool chain supporting
requirement management. Finally, we will focus on
industrial deployments and future enhancements.

2. Needs

2.1 Requirement definition and terminology

Requirements engineering covers the specification
and design activities throughout the product
development cycle. The understanding of the
customer needs is translated into requirements. On
each intermediate level of product development, it is
verified that the activities satisfy the requirements on
the appropriate level, finally demonstrating that the
product delivered to the customer meets his needs.

A requirement is a statement that defines one or
more constraints on one or more blocks of the
system to develop, or one or more characteristics of
this (these) block(s) and is identified by a label. It
must be possible to validate a requirement and verify
its implementation.

Refined requirements – also called current
requirements all over this paper – are downstream
requirements that specify one upstream requirement.

2.2 Approach definition

The input of the work described below was the
requirement model produced by the Reqtify tool
export facilities: a model containing a set of
upstream requirements.

The Reqtify software, developed and
commercialized by the company Gensys, is a

 Page 2/7

solution for managing requirements traceability and
impact analysis across several documents.

The component TRAMway, especially designed for
the TOPCASED platform is a light open-source
adaptation of the Reqtify commercial solution.
TRAMway component provides a simple traceability
solution working on several documents reflecting the
project lifecycle (specification, design, validation
plan, test plan, etc.). An Open Office document
parser is provided with this tool.

As the TRAMway meta-model was not complete
enough to fully describe the requirement information
needed by avionics software specification document,
it was extended with essential concepts such as
requirement refinement, allocated, untraced, and
unaffected relationships, problematic requirements
and even requirement project configuration. With this
extension, a “Refined requirement” references two
different elements: one model element (created from
a modeling tool) and one upstream requirement
(imported from TRAMway tool). We could then link
model and textual requirements while keeping
requirement traceability between upstream and
“current” requirements which is requested when
developing under avionics certification constraints.

Those complements to the initial TRAMway
component and their generalization to all modeling
languages gave birth to the TOPCASED-REQ
component.

3. Context

3.1 Organization

TOPCASED-REQ is now included in the
TOPCASED platform distribution. This component is
the result of CS and ATOS ORIGIN work in an open
innovation approach. CS developed and maintained
the first contribution oriented to SAM models and
ATOS ORIGIN generalized the approach so that it
could be applied on any modeling language
implemented in the TOPCASED platform (amongst
them UML/SysML and AUI). Those both tasks were
complementary.

3.2 Platform

TOPCASED is an open-source software platform
primarily dedicated to the development of critical
embedded systems or software with a model based
engineering process.

TOPCASED platform is built around Eclipse
technologies and especially on Eclipse modeling
stack, a set of frameworks that facilitate the
management of models (load, edit, render, query,
split, compare, validate, transform, generate, import,
export…). TOPCASED provides several components
that manage or consume models.

3.2.1 Modeling editors

TOPCASED provides a framework able to generate
a modeling editor from the meta-model. Some of the
editors generated from this framework are included
in the standard TOPCASED platform distribution.

UML editor: helps users to create UML models
through diagrams compliant with the OMG UML
specification. UML editor provides these following
diagrams: Use Case, Class, Profile, Activity,
Component, Composite Structure, State Machine,
Sequence, and Deployment.

SysML editor: provides functionalities from UML
editor and specific functionalities for SysML
diagrams like Requirement, Block Definition, Internal
Block, and Parametric. The TOPCASED SysML
editor uses a SysML meta-model derived from the
OMG SysML Profile.

SAM editor: avionic-oriented language derived from
SART, it allows the graphical design of functional
structured analysis through two kinds of diagram:
System and Automaton.

3.2.2 Simulation

TOPCASED simulation tool provides a framework
and toolkit to animate models from UML/SysML and
SAM meta-models. The framework has been defined
as generic as possible and thus provides API to plug
the simulator to another meta-model. The toolkit also
provides tools to simulate models.

It is possible for a simulation to define a scenario
that can then be run in command line or interactively.
In that case, the user can play the scenario step by
step and select any of the different possible events
available for the current state. According to the
chosen event, it can trigger one or another transition
and reach a new state. Simulation can also randomly
be executed.

3.2.3 Code Generation

TOPCASED is bundled with several “Model to Text”
(M2T) transformation engines technologies like
Acceleo or XPand which allow users to define
custom generators.

 It is also bundled with predefined generators:

• UML2C generating C code from a UML Model

• UML2Java generating Java code from UML
Model

• UML2RTSJ generating real time Java from UML
Model

• SMUC generating Ada, Java or C code following
the “state” design pattern from a UML model
containing a State Machine

 Page 3/7

3.2.4 Reverse engineering from code

TOPCASED provides features to create UML
models from a Java plugin (Java2UML) and from
Java Archive (JAR).

3.2.5 Documentation generator

TOPCASED provides a framework that can retrieve
model data or diagrams and insert that information at
given places in a document.

4. Global Approach

The global approach of TOPCASED-REQ is
decomposed in three distinct parts:

• generating a requirement file starting from a
document file (xlsx, docx, xls, doc, csv) or from a
Reqtify export,

• attaching the requirement file to a TOPCASED
model and creates requirement traceability links
between model elements and upstream
requirements,

• exporting requirement traceability across
generated documentation or traceability matrix.

5. Importing requirements from Reqtify and
doc2model approach

5.1 Reqtify import and export

As previously evoked, the differences between the
TRAMway and TOPCASED-REQ requirement meta-
model (also called “Requirement meta-model” in this
document) are relatively weak.

The model transformation from TRAMway to
Requirement and its opposite appeared to be easy
since Requirement is inherited from TRAMway meta
-model. That’s why, we wrote two ATL [3] model
transformations which are respectively: Requirement
to TRAMway (import) and TRAMway to Requirement
(export) .

The TRAMway to Requirement transformation has
been integrated into a user-friendly interface (Cf.
Figure 1) and takes place into the SAM Requirement
process notably at the beginning, when a new
requirement model needs to be created and
attached to an existing SAM resource.

The user needs to provide the access path to its
semantic model (a SAM model in the example) and
the access path to an XML resource (exported from
Reqtify) containing upstream requirements. Other
optional information can be provided at this stage.

During an update operation, the model
transformation described above also occurs (Cf.
§6.4).

Figure 1: Requirement wizard creation

5.2 Doc2model approach

Doc2Model is a TOPCASED technology now
contributed to Eclipse. It is a generic parser of
documents which creates an EMF Model from a
configuration file.

The technology recognizes regular expressions and
styles for text documents. It recognizes also column
number for spreadsheet documents. In addition, the
technology provides a Java API to parse different
types of document.

5.3 TOPCASED requirement import

The “TOPCASED Requirement import” wizard is a
front-end interface that provides the user a way to
import its requirements from any document. This
wizard is built upon doc2model framework. The
wizard allows a user to define dynamically a
doc2model configuration file without knowing the
doc2model language.

The user can:

• define styles to recognize requirements and
requirement attributes. The styles are
automatically imported from the document, and
the selection is easy for the user.

• define regular expression for requirements
identification and requirement attribute
identification. Current version of Doc2Model
browses elements paragraph after paragraph.
So a regular expression is analysed in each
paragraph.

• To help the user in defining regular expressions,
a widget is available in TOPCASED-IMPORT
wizard. This widget allows the user to check if a
regular expression matches a specified string.
The widget can also display the result of
grouping expressions.

 Page 4/7

• define a column number: Doc2Model
engine creates elements when a column
number is matched.

Figure 2: Requirement recognition definition

At requirement identification step, the user can
choose if the document is recognized in a
hierarchical or flat way. If the hierarchical way is
chosen, the output requirement model will be
structured according to the structure of the
document, i.e. the heading styles from the input
document define a hierarchical structure.

The requirement meta-model provides to user the
possibility to define custom attributes with specific
keys and values. The Requirement import allows
users to map the recognized elements with defined
attributes.

Figure 3: mapping between recognition and
requirement attributes

At the end of the process, a requirement file is
generated and can be attached to a model.

To use requirement traceability in TOPCASED, it is
necessary to generate a Requirement model file but
the TOPCASED requirement import can also
generate UML and SysML models, with the
possibility to apply stereotypes of a specified profile.
For UML the generated elements in the models are
Classes and for SysML the elements are
Requirements.

5.4 Requirements filter

There are two ways to get a requirement file. It can
be useful for the user to customize its requirement
model before attaching it to a given SAM or
UML/SysML model and create traceability links.
TOPCASED provides a feature to filter requirements
that can analyse the requirement attributes and ids.
The user has the possibility to define a regular
expression that will filter the requirements he wants
to keep.

Figure 4: option to filter imported requirements

6. Requirement Traceability in modeling process

The implemented solution comes in addition to any
modeling editor. Our initial objective was here to
make possible coverage of model elements
graphically represented, notably those supported by
the SAM [3] Modeler in a first time, then those
coming from other Modelers (UML, SysML, AUI,
etc.).

6.1 Requirement project configuration

Although a default configuration exists for current
requirements, the user can customize some
behaviour such as the attribute list or the naming
pattern. These operations can be performed
according to two levels (workspace or project) and
must be done before starting a new traceability
project.

 Page 5/7

At any time during the modeling process, it is
possible to add, remove, replace or alter the order of
attributes; the requirement model is then updated
according to those changes.

Figure 5 : Attribute modification dialog

6.2 Views

Two views split the information contained by the
requirement model into two distinct parts.

• The upstream view: when a semantic model
linked to a requirement model is opened into its
modeling editor, the content of the upstream
view shows the upstream part imported in read-
only. This tree hierarchy is structured in
documents containing sections in which
upstream requirements are stored. This point of
view reflects the original document.

Figure 6 The upstream requirement view

• The current view: this view is the most important
point of the application. Current requirements
are organized according to their hierarchical
container. These hierarchical containers provide
a concrete link to a model element; that’s why

we have the feeling to visualize a real overview
of the model structure.

Figure 7 The current requirement view

6.3 Interactions with the modeling editor

Interactions by drag and drop with the modeling
editor allow the end user to enrich or organize its
requirement model. Creation operations are a key
point since they make both a relation between
upstream and current requirements via dedicated
attributes, but also between a current requirement
and a semantic model element via their hierarchical
container.

From upstream view to Modeler: this operation has
for effect to create a new current requirement and to
attach it to the corresponding hierarchical container.
Depending on the project configuration, one or
several attributes of the current requirement
reference the upstream requirement.

From upstream view to current view: if the drop
target is a hierarchical container, a new current
requirement is created inside. If the drop target is a
current requirement, attributes of kind AttributeLink
are added to this requirement and reference the
upstream requirement at the origin of the drop
operation.

Move operations play also an essential role since
they allow arranging information aimed to be injected
into generated documents, as it is already done for
producing specification documents in an industrial
context.

Current view to Modeling editor: this operation is
used to change the hierarchical container of one or
several current requirements, the drop target being
the new container to set. The current view, listening
to requirement model changes, is refreshed.

 Page 6/7

Interactions inside Current view: drag and drop
operations are supported in order to alter the order
of current requirements inside or outside their
respective containers.

6.4 Document update and impact analysis

An interesting feature, based on “EMF Compare”
framework, enables to upgrade the traceability to a
new version of an upstream document. Two
requirement models (the new and the previous) are
compared and the impacts on traceability are
computed. Only impacted upstream requirements
that are referenced at least one time by a current
requirement are considered and processed. Impacts
are logged into the problem view and current
requirements are marked as impacted. The operator
will have to check manually and validate those
impacts before going further in its job; requirement
model is blocked at this stage in a read-only state.

6.5 Collaborative work

The requirement management system is compliant
with team work. Users can use TOPCASED control
command to split a model file into several sub
models file resources. That enables collaborative
work on the same global model through different
resources that can each be put in version control
system.

7. Export capabilities

Documentation generation: During the traceability
process, it is important to have a visibility of the
covered elements.

At any time a ratio percentage of coverage is visible
for end user in TOPCASED status bar, but it does
not provide a complete view of elements.

TOPCASED provides a documentation generation
tool able to inject in template document (docx, odt)
content from models: Gendoc.

To use Gendoc it is necessary to import the host
document and to create a model representation of
the document.

Once the document is imported, it is possible to link
the model with the different data sources and to
generate the final document.

To define dynamic parts in the document, the user
inserts “generated fragments” which reference a
predefined template. These templates are M2T
templates (Acceleo or XPand) generating Docbook
files.

To manage the Requirement traceability capabilities
of TOPCASED, a set of templates is provided in the
Templates library project. These templates enable to
display, for instance, a table with requirements linked
to a given element.

8. Industrial application

There are currently some industrial applications of
TOPCASED-REQ component: specification teams in
avionics industry have integrated the tool in their
process to manage requirements between their UML
or SAM specification models and their upstream
requirements.

The goals of these teams using TOPCASED-REQ
are both providing documentation to the design
teams and also satisfying quality insurance and
certification constraints. Generated documents
demonstrate how the upstream requirements are
covered by model elements.

Currently TOPCASED-REQ component is used by
teams of a dozen of persons for UML and around
twenty for SAM. Documentation generation has
proven its efficiency through generation of several
hundred pages that conform to firm quality process
(almost 500 pages long for both UML and SAM).

9. Future orientations

The original need was to offer a system able to
easily perform a full traceability between textual
requirements and SAM model elements to support a
given requirement process. The requirement
management system had to be non intrusive on
existing platform (TOPCASED) but also extensible
for future developments.

Other experimentations carried out later on UML
have proven the feasibility and the extensibility of
this approach to other languages and process :
requirement are structured on the same way, data
are presented using the same views, traceability
links are done the same way; so main functionalities
could then be adapted to the UML scope.

Our current developments follow two main axes:

• Ensure a real degree of genericity regardless of
the used modeling language. This task consists
in merging the two contributions in order to
provide a unique solution compliant with all
TOPCASED modeling editors (existing or to
come). Initial solution implemented for SAM is
too specialized with respect to avionic needs
and the global architecture is also closely
dependant of the SAM modeling editor. Solution
implemented for UML (and other languages),
from the initial SAM approach brings new fresh
ideas but still requires some efforts to reach the
same level of maturity even if major features
have been applied.

• Adapt the architecture for a wider use, notably
for languages already defining requirement
notions (e.g SysML). Until now, the process
uses a triplet of models: the DSL model, the
graphical model (diagrams) and the requirement
model. This solution cannot be applied for

 Page 7/7

SysML models where the notion of requirement
model does not make sense as SysML already
provides requirement concept. So the objective
is to keep the same principle without having a
dedicated requirement model – SysML in this
case will store the requirements and links to the
model elements – so we have to adapt the
requirement views (upstream and current views)
so that they are not linked to a specific
requirement meta-model but can display
requirements from many different sources.

10. Conclusion

Feedbacks are promising for this model-driven tool
chain. At any time, a team member can prove and
justify his design choices according to traceability
defined between requirements and model elements.

We have seen that TOPCASED-REQ is a solution to
manage traceability links between upstream
documents and model elements. Now, it would be
interesting to consider traceability at different stages
of the V-cycle and not only at the specification level.

11. Acknowledgement

We thank the Airbus teams from their interactions,
advices and feedbacks helping us to improve the
work performed.

12. References

[1] P. Farail, P. Gaufillet, A. Canals, C. Le Camus, D.
Sciamma, P. Michel, X. Cregut, M. Pantel, “The
TOPCASED project: a Toolkit in Open Source for
Critical Aeronautic Systems Design”, ERTS 2006,
25-27 January 2006, Toulouse, France.

[2] A. Canals, S. Gabel, P. Gaufillet, “Les composants
SAM et OCL du projet TOPCASED“, NEPTUNE
2009, 26-27 May 2009, Paris, France.

P. Gaufillet, S. Gabel, “Avionic Software
Development with TOPCASED SAM”, ERTS 2010,
19-21 May 2010, Toulouse, France.

[3] A. Canals, C. Le Camus, M. Feau : An Operational
Use of ATL: Integration of Model and Meta Model
Transformations in the TOPCASED Project.
DASIA 2006 - Data Systems in Aerospace,
Proceedings of the conference held 22-25 May,
2006, Berlin, Germany. Edited by L. Ouwehand.
ESA SP-630. European Space Agency, 2006.
Published on CDROM., p.40.1

13. Glossary

MDD: model-driven development

TOPCASED: Toolkit in OPen source for Critical
Applications and SystEm Development

SAM: Structured Analysis Model

SART: Structured Analysis for Real Time

OMG: Object Management Group

UML: Unified Modeling Language

SysML: Contraction of System and UML

SMUC: State Machine from UML Compiler

M2T: Model 2 (to) Text

API: Application Programming Interface

ATL: ATLAS Transformation Language

EMF: Eclipse Modeling Framework

DSL: Domain Specific Language

